Machine Learning in Health Care: Too Important to Be a Toy Problem

Sherri Rose, Ph.D.

Associate Professor Center for Health Policy Center for Primary Care & Outcomes Research

Co-Director Health Policy Data Science Lab

Stanford University

drsherrirose.org
@sherrirose

November 18, 2020

н **ECONOMICS POLICY OUTCOMES**

"Learning two fields takes, surprisingly, twice as long as learning one. But it's worth the investment because you get to solve real problems for the first time."

Barbara Engelhardt | Princeton

"In both private enterprise and the public sector, research must be reflective of the society we're serving."

Rediet Abebe | Harvard

...behind every data point there is a human story, there is a family, and there is suffering.

Nick Jewell | LSHTM & UC Berkeley

DATA

The increasing availability of electronic health information offers a resource to health researchers

The increasing availability of electronic health information offers a resource to health researchers

General usefulness of this type of data to answer targeted scientific research questions is an open question

The increasing availability of electronic health information offers a resource to health researchers

General usefulness of this type of data to answer targeted scientific research questions is an open question

The increasing availability of electronic health information offers a resource to health researchers

General usefulness of this type of data to answer targeted scientific research questions is an open question varies

The increasing availability of electronic health information offers a resource to health researchers

General usefulness of this type of data to answer targeted scientific research questions is an open question varies

May need **novel statistical methods** that have desirable properties while remaining computationally feasible

$EHR \neq EHR$

$EHR \neq EHR$

Health Affairs

Health Care Claims Data May Be Useful For COVID-19 Research Despite Significant Limitations

Maimuna S. Majumder, Sherri Rose

Prediction Clustering Inference Generalizability

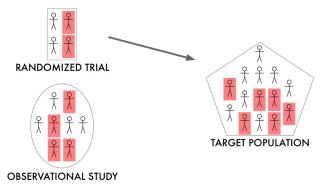
Clustering

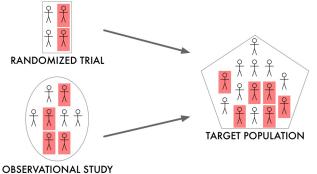
nference

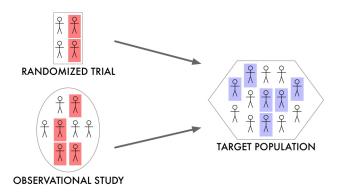
Generalizability

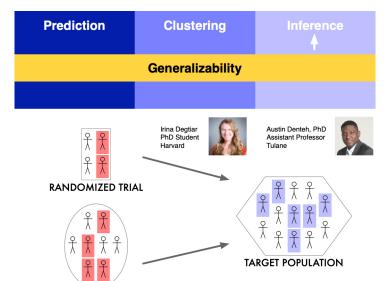
RANDOMIZED TRIAL

OBSERVATIONAL STUDY

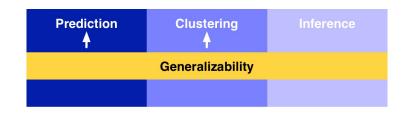


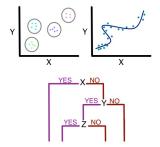


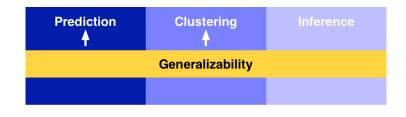


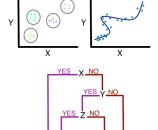


OBSERVATIONAL STUDY



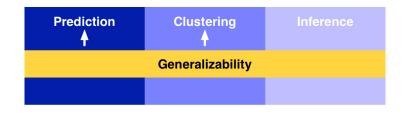


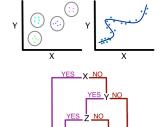




Network Open.

Machine Learning for Prediction in Electronic Health Data Sherri Rose, PhD

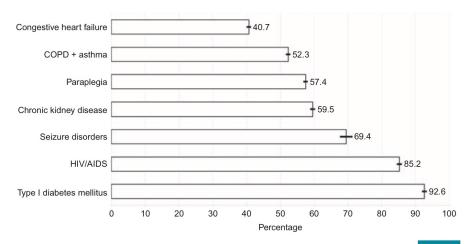




Machine Learning for Prediction in Electronic Health Data Sherri Rose, PhD

The machine learning researchers who develop novel algorithms for prediction and the clinical teams interested in implementing them are frequently and unfortunately 2 nonintersecting groups.

Chronic Conditions



Risk Adjustment for Health Plan Payment

Randall P. Ellis , Bruno Martins and Sherri Rose

FAMILIAR QUESTION,

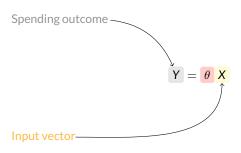
DIFFERENT PROBLEM

- Redistribute funds based on health
- Encourage competition based on efficiency and quality
- Massive financial implications

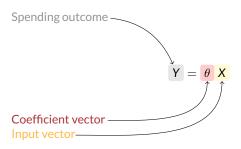
- Redistribute funds based on health
- Encourage competition based on efficiency and quality
- Massive financial implications

- Redistribute funds based on health
- Encourage competition based on efficiency and quality
- Massive financial implications

- Redistribute funds based on health
- Encourage competition based on efficiency and quality
- Massive financial implications

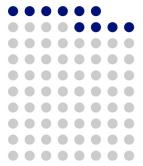


- Redistribute funds based on health
- Encourage competition based on efficiency and quality
- Massive financial implications



Variable Selection and Upcoding

Reduced set of 10 variables 92% as efficient

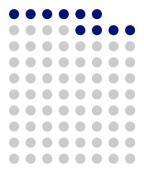


A Machine Learning Framework for Plan Payment Risk Adjustment

Sherri Rose

Variable Selection and Upcoding

Reduced set of 10 variables 92% as efficient



"...results for the risk adjustment algorithms that considered a limited subset of variables...performed consistently worse across all benchmarks."

Sample Selection for Medicare Risk Adjustment Due to Systematically Missing Data

Savannah L. Bergquist , Thomas G. McGuire, Timothy J. Layton , and Sherri Rose

A Machine Learning Framework for Plan Payment Risk Adjustment

Sherri Rose

Prediction Clustering Inference Generalizability Fairness

Who decides the research question?

Who is in the target population?

What do the data reflect?

How will the algorithm be assessed?

Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification*

Joy Buolamwini

MIT Media Lab 75 Amherst St. Cambridge, MA 02139

JOYAB@MIT.EDU

Timnit Gebru

 ${\tt TIMNIT.GEBRU@MICROSOFT.COM}$

Microsoft Research 641 Avenue of the Americas, New York, NY 10011

Black Patients Miss Out On Promising Cancer Drugs

A ProPublica analysis found that black people and Native Americans are under-represented in clinical trials of new drugs, even when the treatment is aimed at a type of cancer that disproportionately affects them.

For the 31 drugs which populations are most at risk for the cancers treated?

For the 31 drugs how often was each population the largest group represented in clinical trials?

None

Similar Risk

None

Other

None

Note: Drugs are labeled "Similar Risk" if black Americans are at least 80 percent as likely as white Americans to be diagnosed with the cancer treated.

Chen and Wong (2018)

Black Patients Miss Out On **Promising Cancer Drugs**

A ProPublica analysis found that black people and Native Americans are under-represented in clinical trials of new drugs, even when the treatment is aimed at a type of cancer that disproportionately affects them.

For the 31 drugs which populations are most at risk for the cancers treated?

ONLINE FIRST

For the 31 drugs how often was each population the largest group represented in clinical trials?

Research Letter

September 28, 2020

None

FREE

None

The Exclusion of Older Persons From Vaccine and Treatment Trials for **Coronavirus Disease 2019—Missing** the Target

Benjamin K. I. Helfand, MSc^{1,2}: Margaret Webb, BA³: Sarah L. Gartaganis, MSW, MPH³: et al.

Utner wone

Algorithmic Fairness

Typical algorithmic fairness problem in computer science has

- outcome Y
- ▶ vector *X* that includes a protected class or sensitive attribute *A* ⊂ *X*

Goal:

Create estimator for f(X) = Y while ensuring the function is fair for A

Common measures of fairness are based on the notion of **group fairness**, striving for similarity in predicted outcomes or errors for groups

Algorithmic Fairness

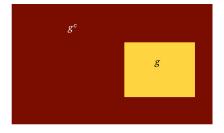
Typical algorithmic fairness problem in computer science has

- outcome Y
- ▶ vector X that includes a protected class or sensitive attribute A ⊂ X

Goal:

Create estimator for f(X) = Y while ensuring the function is fair for A

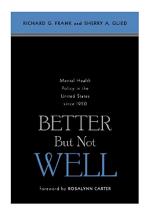
Common measures of fairness are based on the notion of **group fairness**, striving for similarity in predicted outcomes or errors for groups



Improving Mental Health Care, 1950-2000

Changes in financing and organization of mental health care, not new treatment technologies, made the difference

"Improvements ... evolved through ... more money, greater consumer choice, and the increased competition among ... providers that these forces unleashed"



Mental Health and Substance Use Disorders (MHSUD)

Risk adjustment in the Marketplaces recognizes only 20% of enrollees with MHSUD

Individuals with MHSUD can be systematically discriminated against

Risk-Adjustment Simulation: Plans May Have Incentives To Distort
Mental Health And Substance Use
Coverage

Large Gains in Group Fairness vs. OLS

Regression Method	R^2	MHSUD Net Compensation
Average	12.4%	
Covariance	12.4	
Net Compensation	12.5	
Weighted Average	12.6	
Mean Residual Difference	12.8	
Ordinary Least Squares	12.9	

Fair regression for health care spending

Large Gains in Group Fairness vs. OLS

Regression Method	R^2	MHSUD Net Compensation
Average	12.4%	
Covariance	12.4	
Net Compensation	12.5	
Weighted Average	12.6	4%
Mean Residual Difference	12.8	
Ordinary Least Squares	12.9	

Fair regression for health care spending

Large Gains in Group Fairness vs. OLS

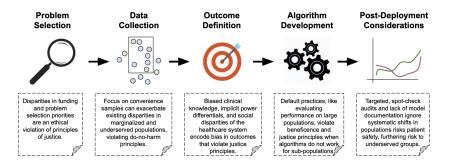
Regression Method	R^2	MHSUD Net Compensation
Average	12.4%	-\$46
Covariance	12.4	-46
Net Compensation	12.5	-232
Weighted Average	12.6	₋₄₁₁ 98 %
Mean Residual Difference	12.8	-1208
Ordinary Least Squares	12.9	-1872

Fair regression for health care spending

Ethical Machine Learning in Health Care

Irene Y. Chen,¹ Emma Pierson,² Sherri Rose,³ Shalmali Joshi,⁴ Kadija Ferryman,⁵ and Marzyeh Ghassemi^{4,6}

⁶Department of Computer Science, University of Toronto, Toronto, ON, Canada



 $^{^{\}mathbf{1}}\mathbf{Electrical}$ Engineering and Computer Science, Massachusetts Institute of

Technology, Cambridge, MA, 02139, USA; email: iychen@mit.edu ²Microsoft Research, Cambridge, MA, 02143, USA

³Center for Health Policy and Center for Primary Care and Outcomes Research,

Stanford University, Stanford, CA, 94305, USA ⁴Vector Institute, Toronto, ON, Canada

Department of Technology, Culture, and Society, Tandon School of Engineering,

New York University, Brooklyn, NY, 11201, USA

POLICY AND PRACTICE

Can Your Hip Replacement Kill You?

By JEANNE LENZER JAN. 13, 2018

Can Your Hip Replacement Kill You?

By JEANNE LENZER JAN. 13, 2018

:TheUpshot

Why Medical Devices Aren't Safer

THE NEW HEALTH CARE APRIL 18, 2016

Things sometimes go wrong with airbags, food and drugs, prompting recalls. It can also happen with medical devices, though you'd think lifesaving devices like heart defibrillators or artificial hips would be closely monitored.

SundayReview | OPINION

Can Your Hip Replacement Kill You?

By JEANNE LENZER JAN. 13, 2018

:TheUpshot

Why Medical Devices Aren't Safer

THE NEW HEALTH CARE APRIL 18, 2016

Things sometimes go wrong with airbags, food and drugs, prompting recalls. It can also happen with medical devices, though you'd think lifesaving devices like heart defibrillators or artificial hips would be closely monitored.

But the data needed to systematically and rapidly identify dangerous medical devices are not routinely collected in the United States.

Your medical implant could kill you

By Jeanne Lenzer

December 16, 2017 | 12:08pm | Updated

Can Your Hip Replacement Kill You?

By JEANNE LENZER JAN, 13, 2018

:TheUpshot

Why Medical Devices Aren't Safer

Things sometimes go wrong with airbags, food and drugs, prompting recalls. It can also happen with medical devices, though you'd think lifesaving devices like heart defibrillators or artificial hips would be closely monitored.

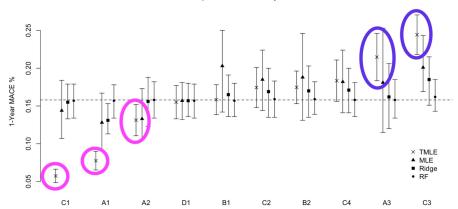
But the data needed to systematically and rapidly identify dangerous medical devices are not routinely collected in the United States.

Your medical implant could kill you

Ry Jeanne Lenzer December 16, 2017 | 12:08nm | Hodated

Cardiac Stent Results

Expected Outcome by Stent



Double robust estimation for multiple unordered treatments and clustered observations: Evaluating drug-eluting coronary artery stents

Cardiac Stent Policy Implications

Implications for patients, hospitals, manufacturers, and regulators.

- How can this information be incorporated into the patient's decision-making process?
- ▶ Will hospitals reconsider their complex contracting with manufacturers to avoid poorer-performing devices?
- Should manufacturers consider pulling stents from the market?
- ► How should regulators respond to postmarket information that was not available at the time of device approval?

Examining racism in health services research: A disciplinary self-critique Rachel R. Hardeman PhD. MPH HSR Health Services Research

J'Mag Karbeah MPH

International Journal of **Epidemiology**

Intersections of machine learning and epidemiological methods for health services research 8

Sherri Rose

Does Your Algorithm Have a Social Impact Statement?

Responsibility

Explainability

Accuracy

Auditability

Fairness

Acknowledgements

Sam Adhikari, PhD NYU

Austin Denteh, PhD Tulane

Savannah Bergquist, PhD Berkeley Haas

Akritee Shrestha, MS Wavfair

Maia Majumder, PhD Roston Children's/Harvard

MGH/Harvard

Purdue

Harvard

Harvard

Harvard

Funding:

NIH Director's New Innovator Award (DP2-MD012722) Laura and John Arnold Foundation NIH R01-GM111339

